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Chapter 14

Statistical Analysis of ELISPOT Assays

Marcus Dittrich and Paul V. Lehmann

Abstract

Cytokine ELISPOT assays have emerged as a powerful tool for the detection of rare antigen-specific T cells 
in freshly isolated cell material, such as blood. While ELISPOT assays allow one to directly visualize and 
count extremely low frequencies of cytokine-secreting T cells among millions of nonsecreting bystander cells, 
the interpretation of ELISPOT data can become ambiguous when (a) spot numbers in antigen-containing 
wells are low, (b) spot counts in negative control wells are elevated, and particularly (c) when both of the 
above occur simultaneously. Thus, the primary task, even before statistics are employed, must be the optimi-
zation of the basic assay parameters and reagents such that the assay yields low background signal in the 
negative-control wells and the maximal number of antigen-induced spots in test wells, i.e., the signal-to-noise 
ratio is maximized. Furthermore, the use of proper spot-size gating parameters for data analysis is indispens-
able for screening out irrelevant background spots, and thus increasing the signal-to-noise ratio. The goal of 
most ELISPOT experiments is to identify positive T-cell responses as defined by a significantly elevated spot 
count in antigen-stimulated wells over the nonstimulated medium-control or negative-control antigen. In this 
chapter, we conclude that – with some limitations – the T-Test and related statistical methods which rely on 
the assumption of normal distribution are suitable for identifying positive ELISPOT results.
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Because ELISPOT typically aims for the detection of rare antigen-
specific cells within a variable background, the notion of “fuzzy in, 
fuzzy out” applies to ELISPOT data – perhaps more so than for 
other immunoassays. Statistical analysis cannot itself substitute for 
experimental stringency in performing ELISPOT assays which 
provide clear, unambiguous results. Preceding the statistical analysis 
of ELISPOT data, therefore, great attention must be given to 
establishing spot counts (which are in part based on the statistical 
analysis of the spot-size distributions) before the counts obtained 
within an experiment are subject to further statistical analysis.

1. Introduction
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In cytokine ELISPOT assays, cytokine secretion from individual cells 
is measured. In typical experiments, 96-well PVDF membrane plates 
are precoated with a cytokine-specific capture antibody, e.g., a suitable 
anti-IFN-  antibody. Due to its fractal surface and high hydrophobic-
ity, PVDF membranes have been found to outperform most other 
membranes which had been used previously for cytokine ELISPOT 
assays (1), and therefore the use of PVDF membranes is highly recom-
mended for obtaining optimal results when performing these tests. 
Historically, cytokine ELISPOT assays had been very fragile and hard 
to reproduce before the introduction of PVDF membranes.

In the next step of the assay, the test cell material (e.g., human PBMC) 
is plated into the precoated wells, both with and without antigen. For 
T-cell assays, the test cells need to be dense enough to allow for opti-
mal contact between T cells and antigen-presenting cells (APC), but 
the cells must not be overcrowded, as it is essential that each T cell 
sits directly on the membrane so that its secretory product can be 
effectively captured. For human PBMC, 100,000–800,000 cells can 
be plated per well into 96-well plates with the number of antigen-
induced spots per number of PBMC plated following a linear rela-
tionship (2). (In contrast, when a monolayer of APC is provided, 
even single T cells can be plated per well and tested (3)).

For the purpose of economizing cell utilization, ELISPOT 
assays are frequently performed with 100,000 PBMC per well. 
However, when low-frequency T cells are to be assayed, increasing 
cell numbers up to 800,000 per well increases the signal in a directly 
linear fashion without disproportionately introducing noise into the 
system. When ambiguous results are obtained through the testing 
of low cell numbers (e.g., 100,000 per well in 96-well plates), 
retesting these PBMCs with higher cell numbers can provide clear 
results. The cells can be readily retested, since protocols have been 
developed that permit an investigator to freeze PBMC such that 
their functionality in ELISPOT assays is retained and is effectively 
identical to fresh cells upon thawing (4). Also, 6-well PVDF 
membrane plates are being introduced that allow for increasing the 
sample size per well tenfold respective to 96-well plates, thus 
increasing 10× the signal-to-noise resolution of ELISPOT assays.

Upon antigen stimulation, the antigen-specific T cells engage in 
the secretion of cytokine which is captured around the cell by the 
membrane-bound capture antibody. Overall, the size and density 
of the resulting cytokine “spot” is reflective of the quantity of 
cytokine produced by the cell, and the morphology of the spots 
reveals the secretion kinetics: i.e., fuzzy spots reflect a rapid secretion 
kinetics, whereas sharp spots are indicative of slow analyte release 
(5) (see also Chapter 11 in this volume). Invariably, T-cell ELISPOT 
assays provide a wide spectrum of spot sizes and morphologies, 
irrespective of whether T-cell clones or primary antigen-specific 
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T-cell populations are studied, and of the analyte (3, 6). Thus, the 
question arises as to how to reliably establish spot counts, i.e., how 
to distinguish whether larger spots result from cell clustering, and 
how to determine the smallest spots which still are to be counted. 
Tremendous variations in counts can be seen in the absence of 
clear, unambiguous criteria for counting. Such criteria can be 
objectively established, however, by understanding the rules that 
underlie spot-size distributions. For T-cell clones, as well as pri-
mary T cells secreting various cytokines, it has been determined 
that the spot-size distribution always follows log-normal distribu-
tion (3, 6). Thus, proper analysis establishes the spot-size distribu-
tion for an assay and subjects the size distribution curve to statistical 
analysis, automatically setting the gates at 99.7% confidence to 
establish upper and lower limits, respectively, for the largest and 
smallest spot sizes which still belong to that distribution. In this 
way, spots that exceed this size gate can be recognized as clusters, 
and spots that are smaller than the lower limit are gated out. Such 
statistical analysis permits objective, user-independent counting 
while spot counts established without such analysis are subjective, 
unreliable numbers contributing to “fuzzy in.”

ELISPOT assays aim at establishing frequencies of antigen-specific 
T cells, i.e., measuring antigen-induced spots over medium-control 
or irrelevant antigen. The negative-control wells, however, can also 
contain cytokine-secreting cells (which generate spots). Such back-
ground spots typically are produced by cells of the innate immune 
system which also secrete the cytokine in question. One of the 
primary challenges of ELISPOT analysis is to differentiate between 
such background spots and antigen-induced, T cell-derived spots. 
This frequently can be accomplished by size gating. T cells typically 
have a substantially higher cytokine secretion rate (resulting in 
lager spot-size distributions) than cells of the innate immune system 
(resulting in a smaller spot-size spectrum) (7). Thus, analogous to 
gating in flow cytometry, the smaller spot-size distributions seen in 
the negative controls can be gated out, allowing for identification 
of the larger, T cell-derived spots in the antigen-stimulated wells. 
ELISPOT gating can be done automatically (and thus, objectively) 
following statistical principles (for more on this topic, please refer 
to the Chapter 13 in this volume). Medium-control and antigen-
stimulated spot counts generated without such counting principles 
are literarily meaningless numbers (much like ungated flow cytom-
etry frequencies), and provide a “fuzzy in” for which subsequent 
statistical analysis cannot compensate.

ELISPOT assays, like most cellular assays, have traditionally been 
performed using culture media which contain serum. Serum, how-
ever, is a major assay variable. It contains cytokines that stimulate 
or suppress the test PBMC, many times resulting in an increased 
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background spot production (triggering cytokine secretion by cells 
of the innate immune system) that is not necessarily accompanied 
by an increased antigen-specific response by T cells. Because the 
cytokines present in serum bind to high-affinity receptors on 
PBMC, even brief exposure of PBMC to a stimulatory or suppressive 
serum during freezing/thawing or washing the PBMC can effec-
tively ruin an ELISPOT assay. The use of serum-free media for 
freezing, washing, and testing is, therefore, highly recommended 
providing typically higher signal-to-noise ratios than even the 
“best” sera selected for this purpose (2).

Because in PBMC, antigen-specific T cells typically occur in low 
frequencies, ELISPOT assays frequently need to detect small 
increases in antigen-induced spot counts versus the negative control. 
Therefore, to increase the statistical relevancy of the resulting spot 
counts, it has become convention to measure cytokine production in 
medium-control and antigen-containing wells in replicate wells, 
typically triplicates. After proper counting of replicate wells for each 
condition (assuring a “high resolution in” – see above), further 
analysis can be done to establish whether there are indeed more 
spots seen in the antigen-containing wells. Many times, the spot 
counts in replicate wells are consistent, and the differences between 
medium-control and antigen-stimulated wells are large – in such 
cases, the interpretation of the results is clear-cut. However, the 
interpretation of ELISPOT data can become ambiguous when (a) 
the spot numbers in antigen-induced wells are low, (b) spot counts 
in negative-control wells are elevated, and (c) when both of the 
former occur simultaneously. Here is where the grey area of 
ELISPOT data interpretation lies, with different solutions, mostly 
empirical, propagated to resolve the problem (8). Further, the choice 
of triplicates is entirely empirical, with its statistical foundation not 
having been sufficiently clearly delineated – more on this below.

Many times, immunizations cause only a moderate increase in the 
frequency of antigen-specific T cells. Such differences can be 
detected when comparing antigen-induced responses in preimmu-
nization PBMC samples with PBMC obtained at various time 
points following immunization. Such longitudinal testing is mostly 
done with cells that have been stored/shipped for many hours, 
sometime days, before being frozen and/or tested. Protracted 
handling can damage the cells, resulting in increased numbers of 
dead as well as apoptotic cells. Standard Trypan Blue cell counting 
can discern between live and dead cells, but does not detect cells 
that have entered upon the irreversible path of apoptosis. Apoptotic 
cells are still alive, and are counted as such with Trypan Blue and 
other live/dead counting methods. Apoptotic T cells should be 
reckoned as effectively dead for functional assays, however, because 
they are refractive to antigen stimulation and will be dead before 
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they could produce cytokine. ELISPOT assay harmonization pan-
els have, therefore, repeatedly emphasized the need to count apop-
totic cells, in addition to live and dead cells, and to correct the live 
count by subtracting the apoptotic count. Various dyes are avail-
able to stain apoptotic, live, and dead cells with different colors for 
visual counting using standard hemocytometers and UV micros-
copy or, more conveniently and precisely, by image analysis or flow 
cytometry.

A key issue in ELISPOT data evaluation is setting the threshold 
beyond which a response should be considered positive. Several 
different approaches are described in the literature which may be 
classified mainly into two different categories: empirical and statis-
tical (8). Empirical approaches generally do not have sound theo-
retical justifications, but can rather be regarded as rules of thumb. 
Such commonly used approaches require an arbitrarily designated 
minimum difference between the mean spot counts for the antigen-
containing wells and the negative-control wells, mostly medium. 
Other empirical rules demand the ratio of antigen-elicited spots to 
spot numbers in the medium control to exceed a certain value – here, 
often a twofold increase is considered to be the cutoff for a positive 
response. Various combinations of these rules have also been pro-
posed, such as combining the minimum threshold R0 for spot 
count per 106 cells with a minimum threshold C0 ratio of antigen 
to control; responses exceeding these values are designated as posi-
tive, yet the two thresholds may be chosen in such a way as to 
obtain a false-positive rate <0.01 (9). The advantage of empirical 
rules is their simplicity. Their major drawback is their lack of reli-
ability when it comes to detecting weak responses. Since they have 
no precise theoretical foundation, empirical rules have no claim to 
universality, since they do not rely on explicit model assumptions 
which could be tested for and thus ensure the general applicability 
of the proposed procedure.

In contrast to empirical rules, statistical tests rely on a theoretical 
background. Here, the observed data (or a statistical result of the 
data, such as the mean) is tested for its compatibility with a (usually, 
purely random) null model (null hypothesis) to obtain a p-value. 
The p-value is consequently a measurement of the probability of 
the observed data under the chosen null model, where low p-values 
indicate evidence which is highly improbable to be observed under 
the null model and suggests a rejection of the null hypothesis. 
Thus, the p-value itself delivers a quantitative measurement of 
probability, and not a binary yes/no decision for the identification 
of a positive response. A call for a positive response is then usually 
claimed when the p-value is below a certain threshold called the 
significance level , where values smaller than 0.05 or 0.01 are 
typically considered significant. Hence, given the null hypothesis is 
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true, the probability of Type I errors (false-positive calls) would be 
5% (for p = 0.05) or 1% (for p = 0.01).

Note that with this definition the p-value always needs to be 
interpreted in relation to the particular null model under consider-
ation; in fact, it could also be regarded as a measurement of distance 
from a certain null model. Moreover, the null model often relies on 
specific assumptions, and the violation of this assumption leads to 
invalid results. Exactly this point is presently the bottleneck for 
scientifically validated statistical analyses of ELISPOT data, since no 
data or predictions are currently available regarding the distribution 
and inter-/independence of ELISPOT data points (spots).

Since as of yet, distributional assumptions are not available for 
ELISPOT data evaluation, some researchers advocate the use of 
resampling-based statistical approaches that do not involve such 
assumptions (10). It allows to perform single or multiple testing 
corrections against a randomly permutated null distribution in one 
step. Simulation studies with data drawn from Poisson and Negative 
Binomial Distributions (which account for an overdispersion effect) 
have been conducted for various assays. The authors advocate the 
usage of permutation tests which require the generation of a back-
ground distribution using a large number (e.g., 10,000) of ran-
dom permutations and comparison of the value of the observed 
test statistics from the real (unpermutated) data against this back-
ground distribution. An empirical p-value can then be computed as 
the fraction of test statistics with a value greater than or equal to 
the value from the permuted background dataset. To generate a 
sufficiently large background distribution (in the case of low repli-
cate numbers), the permutations can be performed over all different 
antigens tested (10). A general problem with the global permuta-
tion approach is that the p-value of one antigen is dependent on 
the responses to other antigens, so the methods may fail to recog-
nize a moderate response in the presence of a large response against 
one of the other antigens (11). Thus, the permutation of the controls 
and of each antigen separately has been proposed (8, 11). Generally, 
resampling-based techniques are rather computationally intensive 
(which, however, is not a great problem with modern computers) 
and often not as easily available to many experimental researchers 
as standard testing methods. Furthermore, when only a low number 
of replicates is available, as is typically the case in ELISPOT experi-
ments, the p-value distribution can become “granular” and, due to 
the limited number of different permutations possible, it may 
become impossible to obtain p-values below a certain threshold. 
Empirical evaluation of ELIPSOT data or resampling-based statistics 
is a valid approach to ELISPOT analysis only when the distribu-
tional properties of spots are not known. Therefore, we set out to 
establish those experimentally, allowing for the introduction of 
assumption-based statistics.
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For ELISPOT counting, and thus for generating the numeric data 
that can be subject to further statistical analysis, we recommend 
the ImmunoSpot Series 5 Instrumentation and Software by CTL, 
Shaker Hts, Ohio, because it offers user-independent, statistics-
based setting of counting parameters for spot recognition and 
gating. Serum-free media for freezing, thawing, and testing of 
PBMC, as well as PBMC reference samples with established antigen-
specific response levels, are also available from CTL.

 1. Regular T-Test statistics can be computed using standard 
spreadsheet software, such as Microsoft Excel which is included 
in the Microsoft Office Suite.

 2. For advanced statistical analysis of ELISPOT data (like fitting 
linear models, testing distributional assumptions, or permutation 
tests), real statistical software packages are required. A prominent 
example is the freely available statistical software package R (12) 
which can be downloaded from http://cran.r-project.org/. This 
is a very powerful statistical computer language which is broadly 
extensible by a wide range of additional packages. To exploit the 
full power of R, some skills in computer programming are 
recommended. Similarly, the commercial MATLAB software 
(http://www.mathworks.com/) includes a statistics toolbox 
which may also be used for analyzing ELISPOT data.

 3. Alternatively, other commercial statistical software packages 
featuring a graphical user interface are available, like GraphPad 
Prism® (http://www.graphpad.com/prism/prism.htm), SPSS 
(http://www.spss.com), SAS (http://www.sas.com), or Statistica 
(http://www.statsoft.com/).

To address the distributional properties of ELISPOT data, we per-
formed experiments with a transfected cell line that constitutively 
secretes IFN- . Increasing numbers of such cells were plated into 
an IFN-  ELISPOT assay, with 192 replicate wells for each cell 
number, and the distribution of the spot counts was studied in 
detail. The results showed that, for lower number of cells (<20), 
the spot counts approximated the Poisson distribution closer than 
the normal distribution, whereas wells with spot counts higher 
than 30 gave an excellent fit to the normal distribution (Fig. 1). 
Several statistical tests are available to verify whether the normality 
assumption holds. These include the Shapiro-Wilks, Kolmogorov-
Smirnov, or the Anderson-Darling tests – the latter, in particular, is 
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one of the most powerful tools for detecting most departures from 
normality (13). Applying the Anderson Darling test to the above 
data, we found no significant deviation from the normal distribu-
tion for the set of wells with 30 (p-value 0.058), 60 (p-value 0.52), 
and 120 (p-value 0.23) cells per well. For the wells with 15 cytokine-
secreting cells, we found only a slight deviation from the normal 
distribution (p-value 0.02). Therefore, we conclude that for 
ELISPOT data in the range of >15 spot counts per well a normal 
distribution of the data can safely be assumed, and statistical tests 
which require normally distributed data should be applicable. 
Thus, the T-Test is well-suited for the statistical analysis of such 
data, and also all T-Test-related statistics used in linear models and, 
in particular, the Analysis of Variance (ANOVA), should apply.

Since optimized ELISPOT assays measure absolute numbers of 
secreting cells, they produce real counts of individual cells, and not 
semiquantitative data or ratios. Thus, one could expect ELISPOT 
data to follow a Poisson distribution. Indeed, analyzing the 
ELISPOT counts from our transfected cell line, we found no 

3.2. Poisson 
Distribution  
of ELISPOT Data  
with 15 Spots  
or Fewer per Well

Fig. 1. Measured versus theoretical distribution of ELISPOT counts. IFN- -transfected CHO cells were plated into an IFN-  
ELISPOT assay at 15, 30, 60, and 120 cells per well, with 192 replicate wells per cell number, developed and counted with 
ImmonoSpot® Software. Distributions for spot counts are depicted for a Poisson distribution (dotted lines ) and a normal 
distribution (the solid line) with the means and a standard deviation corresponding to the square root of the means.
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significant deviation from the Poisson distribution at low counts 
(15 spots) per well. In the low-count range (<15 spots), ELISPOT 
data should thus be assumed to have a Poisson distribution. In con-
trast to the normal distribution, the Poisson distribution supports 
only positive values and is skewed rightward in the range of low 
intensities, i.e., small mean values (especially in the range <5). For 
higher mean values, however, the Poisson distribution becomes 
more symmetric and approximates a normal distribution (Fig. 1). 
Furthermore, it should be noted that for Poisson-distributed data 
there is a coupling between the mean and the variance (with vari-
ance = mean) as the Poisson distribution is characterized by only a 
single parameter. In effect, this means that the variance increases 
proportionally as the mean increases, meaning that the ratio of the 
variance to the mean is the same for any response intensity (Fig. 2; 
left side). As is the case with real count data from many different 
areas, one can also observe an overly large variance with increasing 
mean values for ELISPOT count data, an effect called overdisper-
sion (Fig. 2; right panel).

The use of the Negative Binomial Distribution has been 
proposed to model count data for ELISPOT counts (10). This 
distribution can be regarded as an extension of the Poisson distri-
bution. It has two parameters which allow modeling of both the 
variance and the mean, and it is thus able to handle the overdispersion 
problem. A common used remedy in cases of assumed deviations 
from the normal distributions is the usage of nonparametric tests, 
such as the well-known Wilcoxon Rank Sum Test. This might entail 

Fig. 2. Overdispersion of ELISPOT count data. Left panel: Simulated count data drawn from a Poisson distribution with 
mean parameter lambda for 15, 30, 60, and 120 cells per well (n = 192 each) exhibit a variance equal to the mean as 
expected. Right panel : Real spot count data obtained with the transfected cell lines display a classical overdispersion 
effect, that is, the variance increases with the mean.
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a loss of power in case of normally distributed data, but can 
provide an improved power over the T-Test in cases of consider-
able deviation from the normal distribution. A further concern is 
that data originating from two different distributions need to be 
compared when the medium background falls into the <20 spots 
category while the antigen-induced spots are >30 (see Note 1).

For pragmatic purposes, it is important to know how the Poisson 
distribution of low-count data affects the performance of the 
T-Test (which requires normally distributed data) in the low-count 
range. Our data from simulations indicate that even for Poisson-
distributed data in the low-count range, no increased number of 
false positives for a significance level of 0.05 is to be expected. 
However, the T-Test may fail to identify weak responses. The 
extent to which the power of the T-Test is affected by a Poisson 
distribution in the low-signal range needs further investigation. 
Increasing the number of replicates in any case increases the prob-
ability of detecting weak responses. The triplicates typically used 
are certainly a minimum. The determination of a reasonable number 
of replicates, however, depends on several variables and often 
requires an advanced statistical power analysis for a particular 
experimental setup and expected effect size (see Note 2).

In conclusion, the usage of empirical rules, such as using fold 
changes with a fixed threshold, should in general be discouraged. 
Albeit enjoying some popularity, such empirical rules do not incor-
porate any information about variance, and thus provide no mea-
surement of confidence. Instead, the application of solid statistical 
tests is highly recommended. The question of which statistical tests 
are best suited for ELISPOT evaluation is an important one, and is 
certainly not completely resolved (see Note 3). Our results from 
transfected cell lines indeed suggest a Poisson distribution, but 
only for data in the low-count range. For spot counts >15, no 
significant deviation from the normal distribution could be 
observed, indicating that spot counts in that range can be assumed 
to be normally distributed. This implies that most standard statistical 
tests, which are valid for normally distributed data, like the T-Test 
and ANOVA models, are applicable in this setting. In any case, 
more investigations (experimental data as well as computer simula-
tions) are needed not only to assess potential effects of deviations 
from normality in the low spot-count range, but also to develop 
novel methods for the analysis of ELISPOT data.

 1. Although being essentially a nonparametric test, the Wilcoxon 
Rank Sum Test requires the data to be independent and identi-
cally distributed (iid). While the first assumption of independence 
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is not affected, the second assumption of identical distributions 
is obviously violated. Whether this has practical implications 
for the statistical analysis of ELISPOT data has not yet been 
investigated, and still requires more in-depth research.

 2. On a practical note, it is recommended to perform all tests 
using at least triplicates, and if the results fall along the border-
line, to retest cryopreserved aliquots at higher cell numbers, 
and with more replicates.

 3. An important aspect here is the understanding of the distribu-
tion of ELISPOT data. Since the assay provides counts of indi-
vidual antigen-specific T cells that are randomly distributed 
during pipetting into the wells, on theoretical grounds, one 
might expect ELISPOT data to follow a Poisson distribution.
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